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Abstract 14 
 15 
Spatially explicit prediction of soil organic carbon (SOC) serves as a crucial foundation for 16 
effective land management strategies aimed at mitigating soil degradation and assessing carbon 17 
sequestration potential. Here, using more than 1000 in-situ observations, we trained two 18 
machine learning models (random forest, and K-means coupled with multiple linear 19 
regression), and one process-based model (the vertically resolved MIcrobial-MIneral Carbon 20 
Stabilization (MIMICS)) to predict SOC content of the top 30 cm of soil in Australia. 21 
Parameters of MIMICS were optimized for different site groupings, using two distinct 22 
approaches, plant functional types (MIMICS-PFT), and the most influential environmental 23 
factors (MIMICS-ENV). We found that at the continental scale, soil bulk density and mean 24 
annual temperature are the dominant controls of SOC variation, and that dominant controls vary 25 
for different vegetation types. All models showed good performance in SOC predictions with 26 
R2 greater than 0.8 during out-of-sample validation with random forest being the most accurate, 27 
and SOC in forests is more predictable than that in non-forest soils. Parameter optimization 28 
approaches made a notable difference in the performance of MIMICS SOC prediction with 29 
MIMICS-ENV performing better than MIMICS-PFT especially in non-forest soils. Digital 30 
maps of terrestrial SOC stocks generated using all the models showed similar spatial 31 
distribution with higher values in southeast and southwest Australia, but the magnitude of 32 
estimated SOC stocks varied. The mean ensemble estimate of SOC stocks was 30.08 t/ha with 33 
K-means coupled with multiple linear regression generating the highest estimate (mean SOC 34 
stocks at 38.15 t/ha) and MIMICS-PFT generating the lowest estimate (mean SOC stocks at 35 
24.29 t/ha). We suggest that enhancing process-based models to incorporate newly identified 36 
drivers that significantly influence SOC variations in different environments could be key to 37 
reducing the discrepancies in these estimates. Our findings underscore the considerable 38 
uncertainty in SOC estimates derived from different modelling approaches and emphasize the 39 
importance of rigorous out-of-sample validation before applying any one approach in Australia.  40 
 41 
 42 
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1. Introduction 43 
 44 
Globally, the soil is the largest biogeochemically active terrestrial carbon pool, storing more 45 
organic carbon than plants and the atmosphere combined. The turnover of soil organic carbon 46 
(SOC) is a key function in plant growth, maintenance of soil water and nutrients, soil structure 47 
stabilization and other biogeochemical processes (Lefèvre et al., 2017). Soil can act as either a 48 
carbon sink or carbon source depending on the balance of carbon input through plant litter and 49 
root exudates and output through respiration and leaching (Terrer et al., 2021; Panchal et al., 50 
2022). Even a small change in SOC stocks, in any direction, could significantly affect the 51 
atmospheric concentration of CO2 and thereby climate change (Stockmann et al., 2013).  52 
 53 
Given the importance of SOC, there is now a large and growing interest in estimating spatially 54 
explicit SOC content and stocks. SOC supports critically important soil-derived ecosystem 55 
services, and the amount of SOC indicates the degree of land and soil degradation (Lorenz et 56 
al., 2019). SOC content below a certain limit will lead to the decline of microbial diversity, 57 
water holding capacity and soil productivity (Stockmann et al., 2015). Additionally, with 58 
growing concerns about increasing anthropogenic CO2 emissions, soil carbon sequestration has 59 
emerged as a potential strategy for climate change mitigation (Smith, 2016; Rumpel et al., 60 
2018). Protection of existing SOC and rebuilding depleted stocks through land management are 61 
potential strategies in mitigating climate change (Bossio et al., 2020). However, effective SOC 62 
management requires accurate knowledge of its existing distribution. Reliable estimates of SOC 63 
stocks and their spatial variation serve as a reference point for assessing how close soil is to its 64 
maximum SOC storage capacity and its potential to sequester additional carbon (Six et al., 65 
2002; Georgiou et al., 2022). Precise estimation of contemporary SOC stocks also provides a 66 
baseline map that can be used to calibrate and initialize dynamic-mechanistic models, enabling 67 
the study of how SOC will respond to climate and land-use change (Minasny et al., 2013; 68 
Viscarra Rossel et al., 2014). It is, for example, a prerequisite for accurately predicting future 69 
carbon–climate feedbacks in Earth system models (ESMs) (Todd-Brown et al., 2013).  70 
 71 
Accurately assessing SOC storage is challenging due to the complexity of carbon formation 72 
and degradation processes in space and time (Keskin et al., 2019). Soil exists as a continuum 73 
containing organic compounds at different stages of decomposition (Lehmann and Kleber, 74 
2015). Soil formation can be described by a function of climate, organisms, relief, parent 75 
material and time (Jenny, 1994). These factors are widely used in SOC studies for digital soil 76 
mapping (McBratney et al., 2003; Viscarra Rossel et al., 2015; Liang et al., 2019). However, 77 
the relationship between SOC storage and these driving variables is complex and spatially 78 
variable (Mishra and Riley, 2015; Viscarra Rossel et al., 2019; Adhikari et al., 2020) leading to 79 
substantial challenges and inherent uncertainties in SOC predictions.  80 
 81 
Mechanistic process-based models and empirical models (including machine learning models) 82 
are two widely employed approaches used to predict SOC stocks and their spatial distribution. 83 
Conventional process-based models assume first-order kinetics for SOC decomposition, 84 
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wherein the rate of C decomposition is dependent on temperature and moisture but independent 85 
of microbial biomass, and equilibrium SOC stock is proportional to carbon input and mean 86 
residence time (Abs and Ferrière, 2020; Wang et al., 2021). ESMs coupled with conventional 87 
SOC models cannot accurately predict patterns of contemporary soil carbon and show high 88 
uncertainties in projected SOC dynamics under future climate change (Todd-Brown et al., 2013; 89 
Todd-Brown et al., 2014). This is partly due to the lack of explicit representation of soil 90 
microbial activities and metabolic traits (Wieder et al., 2015). Numerous microbial models have 91 
been developed in the past few decades to improve model performance of SOC predictions 92 
(Chandel et al., 2023), but these models has rarely been incorporated into large-scale modelling 93 
frameworks partly due to the lack of rigorous validation (Luo et al., 2016). Process-based SOC 94 
models are constructed based on our understanding on the major processes governing SOC 95 
dynamics (e.g., carbon input, decomposition, and loss). However, the disagreement in 96 
projections of carbon dynamics by different models highlights the need to improve our 97 
knowledge of SOC cycling (Luo et al., 2016). Machine learning models without any process-98 
level assumptions provide a tool to identify the most influential controls on SOC variations. 99 
Machine learning models can represent non-linear and non-smooth relationships between 100 
predictor and response variables as well as interactions between different predictors (Heung et 101 
al., 2016). Various machine learning algorithms have been successfully used in digital soil 102 
mapping to predict high-resolution spatially explicit SOC content (Lamichhane et al., 2019).  103 
 104 
Several modelling studies of soil carbon content/stocks have been conducted in Australia. Wang 105 
et al. (2018a) trained boosted regression trees and random forest models using observations 106 
from the semi-arid rangelands of eastern Australia. Both models predicted SOC stocks 107 
moderately well based on performance metrics. The fitted models were then applied to map the 108 
spatial distribution of SOC at two soil depths (0-5 cm and 0-30 cm).  Continentally, Viscarra 109 
Rossel et al. (2014) trained the CUBIST model, a form of piecewise linear decision tree, using 110 
more than five thousand observations to produce a high resolution (90 m ´ 90 m) baseline map 111 
of SOC stocks of Australian terrestrial systems and its uncertainty at 30 cm depth. Based on the 112 
baseline map, Walden et al. (2023) derived spatially explicit estimates of Australian SOC stocks 113 
and uncertainty including additional data from forests from southeastern Australia and coastal 114 
marine (or blue carbon) ecosystems. SOC content at multiple soil depths along with associated 115 
uncertainties were also estimated using different machine learning algorithms (Viscarra Rossel 116 
et al., 2015; Wadoux et al., 2023). Moreover, the distribution of different soil carbon 117 
compositions (i.e., the particulate, mineral-associated and pyrogenic organic carbon fractions) 118 
and the importance of environmental factors on their variations were also studied using machine 119 
learning (Viscarra Rossel et al., 2019). However, despite the progress made in SOC modelling, 120 
significant uncertainties persist in SOC estimates due to the inherent complexities of SOC 121 
variations, the lack of appropriately sampled SOC observations and the amount of data. All 122 
these continental estimates were generated using empirical modelling approaches or first-order 123 
biogeochemical models (Grace et al., 2006; Lee et al., 2021). Estimates from mechanistic SOC 124 
models with explicit representation of microbial metabolism are missing despite offering the 125 
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potential to better constrain SOC dynamics under future climate change scenarios in a way that 126 
empirical approaches cannot. 127 

 128 
Our primary objective in this paper is to assess the predictability of SOC stocks in Australia. 129 
We generate a range of estimates of terrestrial SOC stocks, employing both process-based and 130 
empirical modelling, and examine why these estimates might differ. First, we discern the 131 
significance of environmental predictors, both at continental and biome scales. We then 132 
evaluate the performance of random forests, k-means with multiple linear regression and the 133 
vertically resolved MIcrobial-MIneral Carbon Stabilization (MIMICS) SOC model with 134 
different parametrization approaches. Finally, we compare the spatial estimates of SOC stocks 135 
using these different approaches across Australia, and discuss their differences and potential 136 
application to future SOC projection. 137 
 138 

2. Materials and Methods 139 
2.1. Model descriptions 140 
2.1.1. Vertically resolved MIMICS 141 
 142 
The MIcrobial-MIneral Carbon Stabilization (MIMICS) model (Wieder et al., 2015; Zhang et 143 
al., 2020) is a soil carbon model that explicitly considers relationships between litter quality, 144 
functional trade-offs in microbial physiology, and the physical protection of microbial by-145 
products in forming stable soil organic matter. There are two litter pools: metabolic (LITm) and 146 
structural (LITs) litter (Figure 1), and the partitioning of litter input into metabolic and structural 147 
pools is determined by the chemical properties of the litter. Litter and SOC turnover are 148 
governed by two microbial functional types that exhibit copiotrophic (i.e., r-selected, MICr) and 149 
oligotrophic (i.e., K-selected, MICk) growth strategies. The MICr is assumed to have higher 150 
growth and turnover rates, and a preference for consuming labile litter (LITm), while MICk is 151 
characterized by lower growth and turnover rates, and a greater competitive advantage when 152 
consuming low-quality litter (LITs) and chemically recalcitrant SOC. SOC in MIMICS is 153 
divided into three pools: physically protected (SOCp), (bio)chemically recalcitrant (SOCc) and 154 
available (SOCa) carbon (Figure 1).  155 
 156 

 157 
Figure 1. Soil carbon pools and fluxes represented in MIMICS (adapted from Wieder et al., (2015)). Litter 158 
inputs are partitioned into metabolic and structural litter pools (LITm and LITs) based on litter quality (fmet). 159 
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Decomposition of litter and available SOC pool (SOCa) are governed by temperature sensitive Michaelis-160 
Menten kinetics (Vmax (maximum reaction velocity) and Km (half saturation constant)), shown by red lines. 161 
Microbial growth efficiency (MGE) determines the partitioning of C fluxes entering microbial biomass pools 162 
vs. heterotrophic respiration. Turnover of microbial biomass (𝜏, blue) depends on microbial functional types 163 
(MICr and MICk), and is partitioned into available, physically protected and chemically recalcitrant SOC 164 
pools (SOCa, SOCp and SOCc, respectively). 165 
 166 
The decomposition of litter pools and SOC pools follows temperature-sensitive Michaelis-167 
Menten kinetics. Microbial growth efficiency (MGE) determines the partitioning of carbon 168 
fluxes entering microbial biomass pools (MICr and MICk) versus heterotrophic respiration. 169 
Access of microbial enzymes to available substrates is restricted by soil texture. The equations 170 
of MIMCS are from Wieder et al. (2015), except that the density-dependent microbial turnover 171 
was introduced to MIMCS to minimize an unrealistic oscillation (Zhang et al., 2020). To better 172 
simulate carbon turnover at different soil depths, vertical transport of soil carbon was introduced 173 
into MIMICS considering carbon transported through bioturbation and diffusion among 174 
adjacent soil layers (Wang et al., 2021).  175 
 176 
Vertically resolved MIMICS is run using a daily time step. The soil was divided into 15 layers, 177 
each of 10 cm thickness. All the sites in this study are assumed to be at steady state (i.e., no 178 
interannual variation of SOC). Historical climate, litterfall input and soil properties were all 179 
assumed to be similar to the average conditions. At each site, the pool size was initialized within 180 
a sensible range for different pools and spun up to finally achieve steady state. 181 
 182 
2.1.2. Machine learning 183 
 184 
Two machine learning algorithms were applied in this study to predict SOC. First, random forest 185 
(RF) is a tree-based ensemble learning method that works by building a set of regression trees 186 
and averaging results (Breiman, 2001). Within the training procedure, the RF algorithm 187 
produces multiple trees. Each regression tree in the forest is independently constructed based 188 
on a unique bootstrap sample (with replacement) from the original training data set. The 189 
response, as well as the predictor variables are either categorical (classification trees) or 190 
numeric (regression trees). Bootstrap sampling makes RF less sensitive to overfitting and 191 
allows for robust error estimation based on the remaining test set, the so-called Out-Of-Bag 192 
(OOB) sample (Wiesmeier et al., 2014). We used the “ranger” package R (version 4.2.0) for RF 193 
computation. We trained the RF model with different numbers of trees and observed that the 194 
model's performance remained similar regardless of the number of trees used. The number of 195 
regression trees generated in the forest (num.trees) was finally set as 200, and the number of 196 
predictors randomly selected at each node (mtry) was set as default, which was 2. 197 
 198 
Multiple linear regression (MLR) is widely used in SOC studies but found to be less effective 199 
than machine learning algorithms (Lamichhane et al., 2019). Here, instead of applying MLR 200 
directly with all environmental factors as predictors, our approach involved a preliminary step 201 
where we partitioned all observations into distinct clusters using K-means, an unsupervised 202 
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machine learning algorithm. K-means aims to segregate the data into a predefined number of 203 
clusters (k), with the objective of maximizing the similarity among data within each cluster. 204 
The underlying assumption here was that sites sharing similar environmental conditions would 205 
exhibit comparable SOC concentration. In cases where certain clusters had fewer observations 206 
than five times the number of predictors, we augmented these clusters by incorporating 207 
observations from other clusters. This augmentation process was guided by the Euclidean 208 
distance between the observation and the cluster centre, ensuring a more robust construction of 209 
the linear regression model. To determine the number of clusters, we applied the coupled K-210 
means and MLR with varying number of clusters. The selection of the optimal number of 211 
clusters was based on the criterion of producing the smallest root mean square error during 212 
independent out-of-sample validation. 213 
 214 
2.2. Identification of dominant controllers on SOC concentration 215 
 216 
RF-based measures of variable importance have gained widespread popularity as tools for 217 
evaluating the contributions made by predictor variables within a fitted random forest model 218 
(Debeer and Strobl, 2020). In the context of this study, we employed permutation variable 219 
importance (PVI) within the random forest framework to gauge the significance of predictors 220 
in predicting SOC concentration. 221 
 222 
The permutation variable importance entails measuring the reduction in a RF model's 223 
performance score upon random shuffling of a single variable values. By doing so, the inherent 224 
relationship between the variable and the SOC concentration is disrupted. Consequently, the 225 
disparity in prediction accuracy observed in a random forest model before and after such 226 
shuffling serves as a quantitative representation of the significance of the particular predictor 227 
in predicting SOC concentration. The greater the importance of the predictor, the higher its 228 
corresponding PVI value becomes. 229 
 230 
2.3. Parameter optimization 231 

 232 
MIMICS parameters were derived from (Zhang et al., 2020; Wang et al., 2021), except that five 233 
parameters (Table 1) which directly control the organic carbon decomposition were optimized. 234 
An effective global optimization algorithm called the shuffled complex evolution (SCE-UA, 235 
version 2.2) method (Duan et al., 1993) was applied for parameter optimization. Parameters 236 
were optimized by minimizing the sum of squared residuals between the observed and modelled 237 
values. 238 

 239 
Vertically resolved MIMICS simulated SOC concentration for 15 soil layers. As observations 240 
only provide one measurement for the top 30 cm soil, we computed the average of the modelled 241 
values spanning the 0-10 cm, 10-20 cm, and 20-30 cm soil layers. This average was then 242 
adopted as the modelled SOC concentration for top 30 cm soil, serving as the basis for 243 
evaluating the difference between observations and simulations. 244 

 245 
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Table 1. The optimized model parameters and their value range 246 
Parameter Definition Range 
av A scaling factor for Vmax 0-30 
ak A scaling factor for Km 0-20 
xdesorp A scaling factor for SOC desorption rate 0-3 
xbeta An exponent of the biomass density dependent mortality rate of microbes 1.05-2 
xdiffsoc A scaling factor for SOC diffusion coefficient in soil  0-30 

 247 
Parameters were optimized for distinct groups divided based on two approaches. The first 248 
approach involved categorizing all observations into four groups based on plant functional 249 
types (PFTs). The second approach was taking the most influential abiotic variables as 250 
predictors (as outlined in Section 2.2) and dividing all observations into 6 clusters using the K-251 
means algorithm. The determination of the optimal number of clusters was achieved through 252 
the minimization of the sum of the within-cluster-sum-of-squares-of-all-clusters (WCSSE), a 253 
process facilitated by the "ClusterR" package in R (version 4.2.0). This clustering aimed to 254 
ensure the highest possible similarity among the environmental factors within each cluster. It 255 
was anticipated that SOC ranges within each cluster would be narrow due to the high similarity 256 
of environmental predictors.  257 
 258 

2.4. Data 259 
2.4.1. Predictors of SOC concentration 260 
 261 
MIMICS requires gridded mean annual temperature (MAT), carbon input and clay content as 262 
driving variables for a spatial simulation. Soil bulk density is also required for conversion 263 
between SOC concentration (g C/kg soil) and SOC stocks (t/ha). Gridded mean annual 264 
precipitation (MAP) and vegetation types were also used during calibration and when 265 
understanding the drivers and spatial variability of SOC. Details of gridded data can be found 266 
in Table 2. 267 
 268 
Gridded daily maximum temperature, minimum temperature, and precipitation at 0.05° 269 
resolution were obtained from the SILO database of Australian climate data. Mean daily 270 
temperature was approximated as the average of maximum and minimum daily temperature. 271 
MAT was calculated from mean daily temperature from 1991 to 2020, and MAP was calculated 272 
from daily precipitation from 1991 to 2020. 273 
 274 
Carbon input was represented by NPP. Gridded mean annual NPP at 500 m was calculated 275 
based on annual NPP from 2001 to 2020 obtained from MODIS (MOD17A3HGF V6.1). NPP 276 
was partitioned to above-/belowground part by multiplying by the root/shoot ratio for different 277 
vegetation types (Mokany et al., 2006). 278 
 279 
The distribution of vegetation types at 3’’ resolution was obtained from National Vegetation 280 
Information System (NVIS, version 6.0). Pixels of non-vegetated regions were removed and 281 
types were aggregated to just 4 PFTs: forest, woodland, shrubland and grassland.  282 
 283 
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Soil bulk density and clay content were obtained from Soil and Landscape Grid National Soil 284 
Attributes Maps (SLGA – Release 2). Soil properties were predicted based on machine learning 285 
at depths 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, and 100-200 cm in SLGA. Bulk 286 
density and clay content were estimated for top 30 cm soil as weighted average of first 3 layers 287 
in SLGA.  288 
 289 
The initial spatial resolution of the gridded data was maintained when extracting the required 290 
environmental factors for each SOC observation. All data were then resampled to 0.05° 291 
resolution using bilinear interpolation for estimation of terrestrial SOC stocks at continental 292 
scale. 293 
 294 
Table 2. Information of gridded data used in this study. 295 

 Source Spatial 
Scale 

Temporal 
Scale Unit Time 

Period Ref. 

Maximum Temperature SILO ~5 km daily °C 1991-2020  (Jeffrey et al., 2001) 
Minimum Temperature SILO ~5 km daily °C 1991-2020  (Jeffrey et al., 2001) 
Precipitation SILO ~5 km daily mm 1991-2020  (Jeffrey et al., 2001) 
NPP MODIS 500 m annually g 

C/m2 
2001-2020 (Running and Zhao, 

2021) 
Vegetation Types NVIS 100 m / / /  
Soil Bulk Density SLGA ~90 m / kg/m3 /  (Grundy et al., 2015; 

Viscarra Rossel et al., 
2015) 

Soil Clay Content SLGA ~90 m / % /  (Grundy et al., 2015; 
Viscarra Rossel et al., 
2015) 

 296 
2.4.2. Soil organic carbon observations 297 
 298 
SOC observations for top 30 cm soil in Australia were collected from two datasets. The first 299 
one, VR dataset, is described in (Viscarra Rossel et al., 2014; Viscarra Rossel et al., 2019). We 300 
removed the observations collected from croplands based on the land-use record in the dataset 301 
and removed those from unvegetated regions based on NVIS vegetation map (see above). 302 
Observations at 1070 sites remained. SOC stocks were reported in t/ha and converted to SOC 303 
concentration (g C/kg soil) using soil bulk density (BD, kg/m3) and soil depth (m), 304 
  305 
                                 𝑆𝑂𝐶!"#!$#%&'%("# =	𝑆𝑂𝐶)%"!*/(𝐵𝐷 × 𝑑𝑒𝑝𝑡ℎ) × 100                                     (1)                 306 
 307 
Clay content and soil bulk density were reported in this dataset and also in Viscarra Rossel et 308 
al. (2015). To better represent SOC distribution in forest, we obtained more forest SOC 309 
observations from a second dataset, the Biomes of Australian Soil Environments (BASE) 310 
described in (Bissett et al., 2016). Here, SOC concentration was reported for 0-10 and 20-30 311 
cm, and we estimated the SOC concentration for 20-30 cm soil using the algorithm (Jobbágy 312 
and Jackson, 2000) below, 313 
 314 
                                                               log+, 𝐶 = 𝑆	 log+, 𝑑 + 𝐼                                                         (2) 315 
 316 
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Where C represents the SOC stocks (t/ha), and d represents depth. S and I are parameters of the 317 
model. We took the average SOC concentration of three layers as the value for top 30 cm soil. 318 
Clay content was reported in this dataset and bulk density was extracted from SLGA (see 319 
above).  320 
 321 
The spatial distribution of SOC concentration observations from different PFTs is shown in 322 
Figure 2a. SOC concentration in top 30 cm is positively skewed, ranging from 1.36 to 59.73 g 323 
C/kg soil with mean value at 9.97 g C/kg soil and median value at 6.11 g C/kg soil. SOC 324 
concentration in grassland, shrubland and woodland show similar distribution patterns (Figure 325 
2b), while SOC concentration in forest is more variable with a standard deviation at 15.92 g 326 
C/kg soil.   327 
 328 
 329 

 330 
 331 
Figure 2. Spatial distribution of 1285 soil organic carbon concentration observations used in this study and 332 
the plant functional types which they belong to (a); boxplots of SOC concentration distributions for each 333 
plant functional type (b). For boxplots, centre lines represent the median value, and upper and lower box 334 
boundaries represent third and first quartile. Whiskers extend to the smallest and largest values within 1.5 335 
times the interquartile range. 336 
 337 
2.5. Model evaluation 338 
 339 
For machine learning models, all observations were separated to a training and test dataset 340 
randomly with 70% used to train the model and the remaining 30% used to validate the 341 
predictions of SOC concentration. For vertically resolved MIMICS, parameters were optimized 342 
for each group, and we again randomly selected 70% of observations in each group to train the 343 
model and used the remaining 30% for validation. To cross-validate, the procedure was repeated 344 
10 times. 345 
 346 
The performance of models was evaluated using four metrics. Mean Absolute Error (MAE) 347 
indicates how close the average predictions are to average observations. Root Mean Square 348 
Error (RMSE) measures the overall accuracy combining mean, standard deviation differences 349 
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(across sites) and (spatial) correlation.	Coefficient of determination (R2) measures the 350 
percentage of variation explained by the model. Lin’s Concordance Correlation Coefficient 351 
(LCCC) (Lawrence and Lin, 1989) measures the level of agreement between predictions and 352 
observations following the 1:1 line. A good model will have MAE and RMSE close to 0 and R2 353 
and LCCC close to 1. 354 
 355 
2.6. Estimation of terrestrial SOC stocks 356 
 357 
To examine terrestrial SOC stocks and their continental-scale spatial distribution, we generated 358 
pixel-based SOC maps utilizing the four models validated within this study. In the cases of 359 
MIMICS-PFT and MIMICS-ENV, the initial step involved segregating all pixels into four 360 
distinct plant functional groups or six environmental clusters. Since cross-validation was 361 
performed, the machine learning and process-based models were evaluated using test data, and 362 
the models with the optimal performance were subsequently employed at each pixel to estimate 363 
terrestrial SOC stocks. The map of ensemble estimate of SOC stocks was also produced as the 364 
average of four models at each pixel. 365 

3. Results 366 
 367 
3.1. Dominant environmental controls of SOC concentration 368 
 369 
Using the Permutation Variable Importance (PVI) in random forest, we identified the 370 
significance of environmental factors in predicting SOC. At the continental scale, soil bulk 371 
density is the most influential driver of SOC concentration variations, following by MAT, NPP 372 
and MAP (Figure 3). Soil clay content and plant functional type exhibit relatively lesser 373 
significance in this regard.  374 
 375 
The relative predictor importance for forests and grasslands aligns with the importance at 376 
continental scale. In shrubland and woodland, NPP and MAP emerge as the pivotal factors. 377 
Collectively, across both continental and regional scales, soil bulk density, MAT, and MAP are 378 
the three most influential abiotic factors. 379 

 380 
Figure 3. Importance of predictors on SOC concentration for different plant functional types. 381 
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3.2. Data clustering based on environmental factors 382 
 383 
To develop the calibration groups for MIMICS-ENV, we partitioned the top three important 384 
abiotic factors, which are soil bulk density, MAT and MAP, into six distinct clusters using K-385 
means (see Section 2.3). The resulting characteristics and SOC distributions for these six 386 
clusters are illustrated in Figure 4. 387 
 388 
Notably, a substantial majority of forests were assigned to clusters 2 and 6 (Figure 4a), while 389 
woodland, shrubland, and grassland observations were distributed across the remaining four 390 
clusters. Among these clusters, cluster 5 exhibits the lowest SOC concentration, while SOC of 391 
cluster 1 and 3 display a comparable pattern but spread across different biomes. Conversely, 392 
distribution of SOC concentration in clusters 2, 4, and 6 shows more pronounced variability 393 
(Figure 4b). 394 
 395 

 396 
Figure 4. Fraction of different PFTs in each cluster divided based on environmental factors (a) and density 397 
plot of observed SOC concentration for different clusters (b). 398 
 399 
3.3.  Evaluation of model performance 400 
 401 
All models employed in this study (RF, K-means + MLR, MIMICS-PFT and MIMICS-ENV) 402 
predicted SOC concentration well for both training data and test data (Figure 5). As anticipated, 403 
performance for both process-based model and machine learning models degrade using out-of-404 
sample data versus in-sample training or calibration data. When using test data, the mean value 405 
of R2 for all models ranges from 0.82 to 0.94, mean LCCC ranges from 0.90 to 0.97, mean 406 
RMSE ranges from 2.88 to 4.51 g C/kg soil, and mean MAE ranges from 1.55 to 2.57 g C/kg 407 
soil. 408 
 409 
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The machine learning models outperformed MIMICS in predicting SOC concentration, 410 
regardless of the optimisation approach taken. Particularly, the random forest algorithm 411 
demonstrated the most accurate predictions characterized by higher R2 and LCCC values and 412 
lower RMSE and MAE values for both training and test data. While MIMICS-ENV displayed 413 
performance similar to that of MIMICS-PFT in SOC concentration predictions based on RMSE 414 
and MAE, the former exhibited slightly superior median R2 and LCCC values (Figure 5).  415 

 416 
Figure 5. Performance metrics of SOC concentration predictions. Units for MAE and RMSE are g C/kg. 417 
Centre line represents median value, and upper and lower box boundaries represent third and first quartile. 418 
Whiskers extend to the smallest and largest values within 1.5 times the interquartile range. 419 
 420 
SOC concentration in forest soil exhibited significantly higher predictability than those in non-421 
forest (woodland, shrubland and grassland) soil, evidenced by higher R2 (ranging from 0.58 to 422 
0.91) and LCCC (ranging from 0.75 to 0.95) for test data (Figure 6). Machine learning 423 
algorithms surpassed MIMICS in predicting SOC for both forest and non-forest soils. Notably, 424 
MIMICS-ENV outperformed MIMICS-PFT in SOC predictions, particularly in non-forest 425 
soils. 426 
 427 
 428 
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   429 
 430 
Figure 6. Performance metrics of SOC concentration predictions for forest and non-forest (woodland, 431 
shrubland and grassland) soils in test (out-of-sample) data. Unit for MAE and RMSE is g C/kg soil. Centre 432 
line represents median value, and upper and lower box boundaries represent third and first quartile. Whiskers 433 
extend to the smallest and largest values within 1.5 times the interquartile range. 434 
 435 
3.4. Estimations of terrestrial SOC stocks  436 

 437 
Descriptive statistics of predicted terrestrial SOC stocks at 0-30 cm soil depth are shown in 438 
Table 3. Forests have the largest mean SOC stocks ranging from 70.3 to 113.9 t/ha by all models, 439 
and shrubland is estimated to have the lowest mean SOC stocks. The distributions of predicted 440 
continental SOC stocks by all models are positively skewed with most estimated SOC stocks 441 
less than 50 t/ha (Figure 7a), and SOC stocks at peak density predicted by MIMICS-ENV and 442 
MIMICS-PFT are smaller than those predicted by machine learning approaches. The maximum 443 
value of SOC stocks predicted by all models vary considerably. 444 
 445 
As expected, all models consistently projected greater SOC stocks in the southeast region, 446 
southwest corner and Tasmania, and consistently indicated lower SOC stocks in central and 447 
western Australia (Figure 7b). Notably, MIMICS-ENV depicted a pronounced deficit of SOC 448 
in central Australia, a distinctive pattern compared to the predictions of other models. Among 449 
the models, K-means coupled with multiple linear regression consistently provided the highest 450 
SOC estimations across all vegetation types, while MIMICS-PFT model consistently yielded 451 
the lowest mean SOC stocks.  452 
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 453 
The ensemble estimate of SOC stocks (Figure 7c) shows a similar distribution pattern as that 454 
generated by single approach. The SOC stocks of the ensemble range from 9.3 to 180.4 t/ha 455 
with an average value of 30.1 t/ha.  The standard deviation across the four estimates (Figure 456 
7d) is positively correlated with the ensemble mean estimate. That is, soils with higher SOC 457 
stocks exhibit greater variability in SOC predictions among different models. Note also that the 458 
variability of estimates tends to be smaller in areas with denser numbers of observations.   459 
 460 

 461 
 462 
Figure 7. Predicted Australian terrestrial SOC stocks (t/ha) for top 30 cm soil and ensemble statistical 463 
characteristics: a) density plot of estimated terrestrial SOC stocks by all models, noting that only stocks less 464 
than 200 t/ha are shown for better comparison of the distribution; b) Predicted SOC stocks for each model; 465 
c) Predicted SOC stocks of the ensemble; d) standard deviation stocks within the ensemble. Grey points 466 
represent locations of SOC observations. 467 
 468 
 469 
 470 
 471 
 472 
 473 
 474 
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Table 3. Descriptive statistics of predicted terrestrial SOC stocks (t/ha) at 0-30 cm soil. Min. and Max. are 475 
minimum and maximum value, respectively. 1st Qu and 3rd Qu are first and third quartile, respectively. 476 
 477 

 PFT Min. 1st Qu median mean 3rd Qu Max. 

K-means 
+ MLR 

grassland 4.2 17.9 21.2 41.5 42.5 601.1 
shrubland 7.2 16.4 19.3 23.6 24.4 472.2 
woodland 7.1 20.1 26.1 33.3 33.7 483.1 

forest 18.0 51.3 95.2 113.9 153.4 474.0 
all 4.2 18.1 23.6 38.2 16.7 601.1 

Random 
Forest 

grassland 10.4 18.5 26.0 30.4 37.2 125.3 
shrubland 10.3 17.0 19.6 21.4 24.4 104.4 
woodland 10.5 20.3 25.8 28.2 32.4 122.1 

forest 29.3 55.0 82.3 78.4 97.0 161.7 
all 10.3 18.9 25.0 29.8 33.7 161.7 

MIMICS-
PFT 

grassland 10.8 16.4 24.1 25.1 33.3 58.7 
shrubland 6.5 12.2 15.5 16.5 20.6 56.5 
woodland 7.8 17.4 21.2 22.1 25.9 61.4 

forest 17.9 44.5 77.4 70.3 88.5 109.9 
all 6.5 15.7 21.2 24.3 28.9 109.9 

MIMICS-
ENV 

grassland 4.2 7.9 15.4 26.9 37.6 124.0 
shrubland 4.4 9.9 13.4 18.6 25.3 131.9 
woodland 4.9 14.7 26.3 28.4 31.3 131.6 

forest 9.6 53.1 92.4 81.6 106.5 134.1 
all 4.2 10.5 21.9 28.1 33.2 134.1 

 478 

4. Discussion 479 
4.1. Relative importance of predictors on SOC variations 480 
 481 
Extensive research has been conducted to discern the factors that govern SOC content/stocks. 482 
Among the commonly employed predictors for SOC variations, climate, organisms, 483 
topography, parent material, and soil properties are prominent (Wiesmeier et al., 2019). Within 484 
this study, we conducted a comparative assessment of the significance of key variables, namely 485 
MAT, MAP, NPP, soil clay content and bulk density, in driving variations in SOC in Australia. 486 
While the number of predictors utilized in our approach is fewer than that employed in most 487 
digital mapping methodologies, its strength lies in the potential for a more direct comparison 488 
between empirical and process-based models. 489 
 490 
Soil bulk density is the most important driver of SOC concentration at the continental scale 491 
(Figure 3). The role of soil bulk density in SOC has been noted before in eastern Australia 492 
(Hobley et al., 2015). Soil bulk density is mainly a function of the parent material, soil genesis 493 
as well as soil aggregate formation (Don et al., 2007). A soil with reduced density exhibits 494 
superior structural organization and an expanded surface area, facilitating enhanced retention 495 
of organic carbon (Lobsey and Viscarra Rossel, 2016). Subsequently, with a slightly lower value 496 
of importance than soil bulk density, MAT emerges as the second most influential factor 497 
governing SOC variations, followed by NPP, MAP, and clay content. This sequence of 498 
significance diverges from the findings of Walden et al. (2023), where the order of importance 499 
was observed as NPP > clay content > MAP > MAT on a continental scale in Australia. The 500 
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number of predictors used in their study is much more than that in our study, which may affect 501 
the contribution of given predictors in SOC variation (Guo et al., 2019). This discrepancy might 502 
however be attributable to the utilization of observations encompassing both terrestrial and blue 503 
carbon ecosystems in their study. Clay emerges as key driver mainly in the groups where aquatic 504 
plants (e.g., seagrass, tidal marsh) appeared. The more extensive dataset encompassing the 505 
eastern coastline, characterized by greater variability and abundance of NPP input, potentially 506 
elevates NPP to a dominant role in influencing SOC variations within their study.        507 
 508 
For SOC in different vegetation types (Figure 3), soil bulk density and MAT are more important 509 
than other factors in forest, and all factors except clay content showed similar importance in 510 
driving SOC in grassland. NPP and MAP dominate the SOC variations in woodland and 511 
shrubland. Climate conditions exert their impact on SOC in all vegetation types. It was proposed 512 
that the primary climatic determinant of SOC variation hinges on the primary constraint 513 
affecting SOC production and turnover (Hobley et al., 2016). In this study, most shrublands and 514 
woodlands are distributed in arid and semi-arid regions characterized by limited precipitation, 515 
which leads to water stress in surface soil, limiting plant productivity and reducing soil C input 516 
(Hobley et al., 2015). Consequently, MAP and NPP exhibited relatively higher influence on 517 
SOC variations. In contrast, forest SOC observations are mainly distributed in areas with 518 
relatively lower temperatures, therefore experience constrained microbial metabolism, leading 519 
to reduced decomposition rates and the high accumulation of SOC (Wynn et al., 2006). 520 
Consequently, MAT emerges as a key factor influencing SOC variations in forests. Furthermore, 521 
it is noteworthy that soil bulk density plays a crucial role in determining SOC distribution within 522 
forest ecosystems, where it is significantly lower compared to other vegetation types. This 523 
lower soil bulk density likely facilitates the formation of microaggregates and enhances the 524 
preservation of SOC within the soil matrix (Bronick and Lal, 2005). Consequently, it effectively 525 
contributes to elevated SOC concentration levels in forested areas. 526 
  527 
PFTs are the only categorical predictor for SOC concentration in this study. SOC is mainly 528 
derived from plant C input through above-/belowground tissues, and SOC turnover and storage 529 
are influenced by plant traits like plant growth rate and chemical and physical composition (De 530 
Deyn et al., 2008; Faucon et al., 2017). With shared representation of similar plant traits, PFTs 531 
are widely used in process-based models (Poulter et al., 2015; Famiglietti et al., 2023). It was 532 
found that the vertical distribution of SOC is highly related to PFTs due to the different root 533 
distribution and above- and belowground allocation (Jobbágy and Jackson, 2000). However, 534 
our study is limited by the absence of SOC observations at multiple soil depths, restricting the 535 
analysis to the spatial distribution of SOC at 30 cm soil depth. The influence of PFTs on SOC 536 
concentration at this particular depth appears relatively insignificant (Figure 3), casting doubt 537 
on the effectiveness of optimizing parameters of process-based model for individual PFTs 538 
(Cranko Page et al., 2023). Considering this, employing the top 3 influential abiotic predictors, 539 
soil bulk density, MAT, and MAP, we partitioned all observations into six distinct clusters using 540 
K-means. It was anticipated that SOC ranges within each cluster would be narrow due to the 541 
high similarity of these three predictors within each group. However, the distribution of SOC 542 
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in clusters 2, 4, and 6 exhibited considerable variability (Figure 4). Given that these clusters are 543 
predominantly composed of forest ecosystems, it becomes apparent that these three abiotic 544 
factors alone are insufficient to fully characterize the intricacies of forest SOC concentration. It 545 
was found that elevation and evapotranspiration also drive the variation of forest SOC in 546 
Australia (Walden et al., 2023), and taking them into account might potentially increase the 547 
predictability of forest SOC. 548 
 549 
4.2. Model evaluation and comparison 550 
 551 
Although the predictors used for machine learning models are not exactly same as the inputs of 552 
MIMICS, the missing factors (e.g., MAP) were used for parameter optimization of MIMCS-553 
ENV, making the predictions dependent on similar information and so comparable to some 554 
extent.  Besides, our study presented clear evaluation metrics for out-of-sample validation, 555 
enabling a more robust assessment of model performance when applied to new datasets. 556 
 557 
Based on the performance metrics of test data, the machine learning models performed 558 
remarkably well (Figure 5). The R2 suggest that both two machine learning models can explain 559 
more than 90% of SOC variability across sites, and random forest did the best job with greatest 560 
R2 and LCCC, and lowest MAE and RMSE. Random forest algorithms were widely adopted in 561 
predicting spatial-temporal SOC dynamics and produced moderate well performance regionally 562 
and globally. For example, Wang et al. (2022) applied random forest to estimate SOC stocks in 563 
south-eastern Australia and explained 69% of the variation of current SOC stocks. Nyaupane et 564 
al. (2023) trained a random forest model using global SOC observations and explained 61% of 565 
SOC variation. The good performance of random forest might be attributed to reduced 566 
susceptibility to over-fitting and better capacity to manage the hierarchical non-linear 567 
relationships that exit between SOC and environmental predictors (Wang et al., 2018b). Other 568 
machine learning methods have been applied to predict continental SOC stocks in Australia. 569 
For example, Walden et al. (2023) trained regression-tree algorithm CUBIST to predict SOC 570 
stocks at 30 cm soil using the harmonised datasets. The mean LCCC and RMSE for out-of-571 
sample validation in their study was 0.78 and 0.20 respectively when log10 transformed SOC 572 
(t/ha) values used. Wadoux et al. (2023) applied quantile regression forest to predict SOC stocks 573 
at multiple soil depths. The prediction accuracy decreased dramatically for deeper depth 574 
intervals with the greatest R2 (0.53) at 0-5 cm soil. The better results in this study may be 575 
attributed to the removal of cropland ecosystems, which are clearly highly managed and so less 576 
predictable. Agricultural practices greatly affect SOC content in Australia and add the 577 
complexity to the relationship between SOC and environmental factors (Luo et al., 2010). 578 
Models using environmental predictors without representation of land use management are 579 
unlikely to be able to fully capture the SOC dynamics in croplands (Abramoff et al., 2022).  580 
 581 
Although MIMICS made less accurate estimations of SOC than machine learning models, it 582 
did well at continental scale with mean R2 at 0.82 and 0.84 for MIMICS-PFT and MIMICS-583 
ENV, respectively (Figure 5). Georgiou et al. (2021) found that there was a mismatch between 584 
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observations and MIMICS in the role of environmental controls in explaining SOC variability 585 
at global scale. NPP and MAT had the most explanatory power for SOC stocks from MIMICS, 586 
while clay content had the most explanatory power for SOC observations, which limits the 587 
predictability of SOC using MIMICS in their study. However, in our study, NPP and MAT rather 588 
than clay content played a greater role in observed SOC variations, perhaps contributing to a 589 
better performance of MIMICS in Australia. The modest performance of MIMICS relative to 590 
machine learning models could potentially be attributed to the absence of explicit representation 591 
of MAP. The augmentation of MAP within parameter optimization in MIMICS-ENV did allow 592 
improved performance compared to MIMICS-PFT, particularly within non-forest regions 593 
where the importance of MAP rivals or surpasses that of temperature. Precipitation is a 594 
determinant of plant productivity, especially in arid and semi-arid regions. Besides, arid regions 595 
with limited precipitation are characterized by lower weathering rate limiting the formation of 596 
mineral-associated soil carbon (Doetterl et al., 2015). Hence, we assume that introducing the 597 
effect of moisture to MIMICS could contribute to more accurate prediction of SOC, as 598 
compared with just taking MAP into account for parametrization, especially in arid and 599 
semiarid regions.  600 
 601 
All models produced lower MAE and RMSE for non-forest SOC but higher R2 and LCCC for 602 
forest SOC (Figure 6). SOC in forest is more abundant and variable compared to SOC in other 603 
vegetation types even when climate conditions are similar, which constrains the accuracy of 604 
forest SOC estimation. However, the higher R2 and LCCC mean that all models show higher 605 
ability to predict forest SOC using environmental predictors. Forests, given they are less 606 
perturbed ecosystems, might afford greater SOC predictability due to the reduced influence of 607 
direct anthropogenic disturbances. This stands in contrast to ecosystems like grasslands, 608 
shrublands, and woodlands, predominantly situated in Australian rangelands where extensive 609 
grazing constitutes the predominant agricultural practice. Primarily, grazing leads to a reduction 610 
in soil carbon influx originating from aboveground biomass. Moreover, the cascading effects 611 
of grazing extend to potential alterations in plant composition and structural attributes, inducing 612 
consequential shifts in litter properties that modulate soil carbon decomposition kinetics (Lunt 613 
et al., 2007; Bai and Cotrufo, 2022). This intricate interplay of grazing-induced disturbances 614 
introduces a layer of complexity to SOC predictions. The disturbances triggered by grazing 615 
manifest in soil carbon pools, leading to a state of disequilibrium rather than adhering to the 616 
assumption of SOC convergence toward equilibrium, as embraced in this study's framework. 617 
Notably, forests, as relatively undisturbed natural ecosystems, demonstrate a better coherence 618 
with the equilibrium assumption, rendering their SOC more amenable to prediction through 619 
environmental drivers. 620 
 621 
4.3. Spatial prediction of SOC stocks 622 
 623 
We produced gridded SOC stocks across Australia using the models validated in this study and 624 
an ensemble estimate as the average of four models (Figure 7). Among the models, K-means 625 
coupled with multiple linear regression produced the largest mean SOC stocks both at 626 
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continental scale and for all vegetation types. In contrast, random forest and MIMICS with 627 
different parameterization approaches produced more conservative SOC stock estimations. The 628 
mean terrestrial SOC stocks estimated by random forest and MIMICS are comparable with that 629 
estimated by Australian baseline map, which was generated using machine learning algorithm, 630 
reporting the mean SOC stocks at 29.7 t/ha with 95% confidence limits of 22.6 and 37.9 t/ha 631 
(Viscarra Rossel et al., 2014). However, SOC stocks might be underestimated by these methods 632 
because of the scarcity of data from the most productive temperate forest both in the baseline 633 
map (Bennett et al., 2020) and in our study. Parameter optimization process of MIMICS and 634 
the training process of random forest are greatly affected by data used to train the model. Most 635 
SOC observations in this study were sourced from arid and semiarid regions, characterized by 636 
limited SOC content. As a result, the models' ability to predict SOC stocks beyond the observed 637 
data range is somewhat constrained. PFTs was found to be less important than other 638 
environmental factors in driving spatial SOC variations (Figure 3), so it was perhaps not 639 
surprising that applying parameters optimized for each plant functional type to the regions with 640 
same PFT but broader climate conditions led to inferior results than applying parameters 641 
optimized for each environmental group.  642 
 643 
The utilization of linear regression in K-means + MLR generated SOC estimates beyond the 644 
range of observations, particularly in eastern Australia where environmental conditions deviate 645 
from the training data. The mean SOC stocks estimated by K-means + MLR (38.2 t/ha) are 646 
higher than those of the other models employed in this study, and align closely with the mean 647 
value 36.2 t/ha reported by Walden et al. (2023) who updated the Australian baseline SOC map 648 
(Viscarra Rossel et al., 2014) by incorporating additional SOC observations from forests and 649 
coastal marine ecosystems. However, caution is required when interpreting extreme values 650 
derived from the K-means + MLR, such as the instance of grassland SOC stocks reaching 601 651 
t/ha (Table 3). These values raise concerns about the reliability of this approach when 652 
extrapolating out-of-sample. Though there is a positive relationship between NPP and SOC 653 
observations in this study, SOC accumulation cannot continuously increase linearly in the 654 
regions where environmental conditions seem highly conducive to SOC formation. The greater 655 
amount of carbon input in eastern Australia might trigger the acceleration of microbial 656 
decomposition because of a priming effect, and lead to a decreased accumulation of SOC stocks 657 
(Ren et al., 2022). The existence of SOC saturation also implies that SOC cannot be 658 
accumulated without limit (Georgiou et al., 2022; Viscarra Rossel et al., 2023). In light of these 659 
complexities, applying linear regression to predict SOC content, especially under the extreme 660 
environmental conditions, should be undertaken with care.  661 
 662 
Continentally, higher SOC was estimated for the southwest corner and southeast Australia 663 
(Figure 7), aligning with other SOC maps for Australia (Wadoux et al., 2023; Walden et al., 664 
2023). These regions are characterized by lower temperature and higher precipitation, therefore 665 
high SOC accumulation appeared because of stimulation of NPP by moisture and the 666 
constrained microbial metabolism in low temperatures. Forest has the largest mean SOC stocks 667 
ranging from 70.3 to 113.9 t/ha estimated by four models in this study. Around 75% of the forest 668 
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SOC is from soil under Eucalypt open forest, and mean SOC stocks under this type of forest 669 
were estimated to be 87.5 t/ha (63.8 -119.6 t/ha for 95% confidence interval) (Walden et al., 670 
2023). Shrublands are estimated to have the lowest mean SOC stocks, and more than 90% of 671 
shrub SOC observations are from soil under Acacia shrubland and Chenopod shrubland, which 672 
rank at the bottom of SOC stocks among different vegetation types (Walden et al., 2023). The 673 
low SOC in shrubland is probably due to low carbon input because of limited rainfall (MAP < 674 
280 mm). Though the mean SOC stocks in non-forest regions are much smaller than that for 675 
forest, the greater area of vegetation cover results in considerable total SOC stocks, highlighting 676 
the importance of carbon building and maintaining via improved managements in these areas. 677 
Greater variability of SOC estimates among different models appears in the regions where SOC 678 
stocks are higher (Figure 7). The sparsity of SOC observations is a primary contributor to the 679 
uncertainties associated with SOC estimates in these regions, highlighting the importance on 680 
continual collection of data to better constrain models’ behaviour. This imperative is especially 681 
pronounced in regions covered by forests, as forested soils exhibit substantial SOC stocks, 682 
amplifying the significance of abundant and accurate data acquisition in these specific 683 
ecosystems. 684 

5. Conclusion 685 
 686 
We compared the performance of two machine learning models, and one process-based 687 
microbial model employing distinct parameterization approaches, to explore the diversity of 688 
SOC estimates within a 30 cm soil depth across Australia. Results highlight soil bulk density 689 
and MAT as predominant factors governing SOC concentration variations, both on a continental 690 
scale and within forest and grassland ecosystems. Conversely, NPP and MAP exhibit greater 691 
significance in driving SOC variations within shrubland and woodland soil. Our study 692 
underscores the importance of including the influence of appropriate environmental factors in 693 
process-based models in different environments. 694 
 695 
Validation results affirm that with appropriate filtering of data (e.g. removing highly managed 696 
crop ecosystems) models can predict SOC at a continental scale with reasonably high reliability, 697 
achieving explained variances exceeding 80% for out-of-sample test data, with random forest 698 
showing highest prediction accuracy. Notably, all models show higher R2 in prediction of SOC 699 
under forest than under non-forest vegetations. MIMICS, with parameters optimized for 700 
different environmental clusters, performed better in SOC prediction than MIMICS with 701 
parameters optimized for different PFTs, especially in non-forest regions. 702 
 703 
All models broadly agree on the spatial distribution of SOC, with higher SOC stocks 704 
concentrated in the southeast and southwest regions of Australia. However, the variations in 705 
estimated values need to be acknowledged, particularly in highly productive regions. Among 706 
these estimates, K-means algorithm coupled with multiple linear regression yields the highest 707 
mean SOC stocks estimate, while the MIMICS-PFT model generates the most conservative 708 
estimate. Considerable disagreement of the maximum and minimum SOC stock values 709 
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predicted by all models exists partly because models are less constrained by observations in 710 
these environments, highlighting the need for continued observational campaigns. 711 
 712 
Our investigation has revealed significant disparities in estimated SOC stocks when different 713 
methodologies were employed. This highlights the need for a critical re-evaluation of land 714 
management strategies that heavily depend on SOC estimates derived from a single approach. 715 
The incorporation of an ensemble of SOC estimates is more likely to effectively capture 716 
elements of the uncertainty associated with SOC estimations, providing a more robust basis for 717 
informing strategies in soil carbon management and climate change mitigation. 718 
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